A Model for Bitcoin Soft Fork Activation

TL;DR: There should be an option, taproot=lockintrue, which allows users to set lockin-on-timeout to true. It should not be the default, though.

As stated in my previous post, we need actual consensus, not simply the appearance of consensus. I’m pretty sure we have that for taproot, but I would like a template we can use in future without endless debate each time.

  • Giving every group a chance to openly signal for (or against!) gives us the most robust assurance that we actually have consensus. Being able to signal opposition is vital, since everyone can lie anyway; making opposition difficult just reduces the reliability of the signal.
  • Developers should not activate. They’ve tried to assure themselves that there’s broad approval of the change, but that’s not really a transferable proof. We should be concerned about about future corruption, insanity, or groupthink. Moreover, even the perception that developers can set the rules will lead to attempts to influence them as Bitcoin becomes more important. As a (non-Bitcoin-core) developer I can’t think of a worse hell myself, nor do we want to attract developers who want to be influenced!
  • Miner activation is actually brilliant. It’s easy for everyone to count, and majority miner enforcement is sufficient to rely on the new rules. But its real genius is that miners are most directly vulnerable to the economic majority of users: in a fork they have to pick sides continuously knowing that if they are wrong, they will immediately suffer economically through missed opportunity cost.
  • Of course, economic users are ultimately in control. Any system which doesn’t explicitly encode that is fragile; nobody would argue that fair elections are unnecessary because if people were really dissatisfied they could always overthrow the government themselves! We should make it as easy for them to exercise this power as possible: this means not requiring them to run unvetted or home-brew modifications which will place them at more risk, so developers need to supply this option (setting it should also change the default User-Agent string, for signalling purposes). It shouldn’t be an upgrade either (which inevitably comes with other changes). Such a default-off option provides both a simple method, and a Schelling point for the lockinontimeout parameters. It also means much less chance of this power being required: “Si vis pacem, para bellum“.

This triumverate model may seem familiar, being widely used in various different governance systems. It seems the most robust to me, and is very close to what we have evolved into already. Formalizing it reduces uncertainty for any future changes, as well.

Bitcoin Consensus and Solidarity

Bitcoin’s consensus rules define what is valid, but this isn’t helpful when we’re looking at changing the rules themselves. The trend in Bitcoin has been to make such changes in an increasingly inclusive and conservative manner, but we are still feeling our way through this, and appreciating more nuance each time we do so.

To use Bitcoin, you need to remain in the supermajority of consensus on what the rules are. But you can never truly know if you are. Everyone can signal, but everyone can lie. You can’t know what software other nodes or miners are running: even expensive testing of miners by creating an invalid block only tests one possible difference, may still give a false negative, and doesn’t mean they can’t change a moment later.

This risk of being left out is heightened greatly when the rules change. This is why we need to rely on multiple mechanisms to reassure ourselves that consensus will be maintained:

  1. Developers assure themselves that the change is technically valid, positive and has broad support. The main tools for this are open communication, and time. Developers signal support by implementing the change.
  2. Users signal their support by upgrading their nodes.
  3. Miners signal their support by actually tagging their blocks.

We need actual consensus, not simply the appearance of consensus. Thus it is vital that all groups know they can express their approval or rejection, in a way they know will be heard by others. In the end, the economic supermajority of Bitcoin users can set the rules, but no other group or subgroup should have inordinate influence, nor should they appear to have such control.

The Goodwill Dividend

A Bitcoin community which has consensus and knows it is not only safest from a technical perspective: the goodwill and confidence gives us all assurance that we can make (or resist!) changes in future.

It will also help us defend against the inevitable attacks and challenges we are going to face, which may be a more important effect than any particular soft-fork feature.

57 Varieties of Pyrite: Exchanges Are Now The Enemy of Bitcoin

TL;DR: exchanges are casinos and don’t want to onboard anyone into bitcoin. Avoid.

There’s a classic scam in the “crypto” space: advertize Bitcoin to get people in, then sell suckers something else entirely. Over the last few years, this bait-and-switch has become the core competency of “bitcoin” exchanges.

I recently visited the homepage of Australian exchange btcmarkets.net: what a mess. There was a list of dozens of identical-looking “cryptos”, with bitcoin second after something called “XRP”; seems like it was sorted by volume?

Incentives have driven exchanges to become casinos, and they’re doing exactly what you’d expect unregulated casinos to do. This is no place you ever want to send anyone.

Incentives For Exchanges

Exchanges make money on trading, not on buying and holding. Despite the fact that bitcoin is the only real attempt to create an open source money, scams with no future are given false equivalence, because more assets means more trading. Worse than that, they are paid directly to list new scams (the crappier, the more money they can charge!) and have recently taken the logical step of introducing and promoting their own crapcoins directly.

It’s like a gold dealer who also sells 57 varieties of pyrite, which give more margin than selling actual gold.

For a long time, I thought exchanges were merely incompetent. Most can’t even give out fresh addresses for deposits, batch their outgoing transactions, pay competent fee rates, perform RBF or use segwit.

But I misunderstood: they don’t want to sell bitcoin. They use bitcoin to get you in the door, but they want you to gamble. This matters: you’ll find subtle and not-so-subtle blockers to simply buying bitcoin on an exchange. If you send a friend off to buy their first bitcoin, they’re likely to come back with something else. That’s no accident.

Looking Deeper, It Gets Worse.

Regrettably, looking harder at specific exchanges makes the picture even bleaker.

Consider Binance: this mainland China backed exchange pretending to be a Hong Kong exchange appeared out of nowhere with fake volume and demonstrated the gullibility of the entire industry by being treated as if it were a respected member. They lost at least 40,000 bitcoin in a known hack, and they also lost all the personal information people sent them to KYC. They aggressively market their own coin. But basically, they’re just MtGox without Mark Karpales’ PHP skills or moral scruples and much better marketing.

Coinbase is more interesting: an MBA-run “bitcoin” company which really dislikes bitcoin. They got where they are by spending big on regulations compliance in the US so they could operate in (almost?) every US state. (They don’t do much to dispel the wide belief that this regulation protects their users, when in practice it seems only USD deposits have any guarantee). Their natural interest is in increasing regulation to maintain that moat, and their biggest problem is Bitcoin.

They have much more affinity for the centralized coins (Ethereum) where they can have influence and control. The anarchic nature of a genuine open source community (not to mention the developers’ oft-stated aim to improve privacy over time) is not culturally compatible with a top-down company run by the Big Dog. It’s a running joke that their CEO can’t say the word “Bitcoin”, but their recent “what will happen to cryptocurrencies in the 2020s” article is breathtaking in its boldness: innovation is mainly happening on altcoins, and they’re going to overtake bitcoin any day now. Those scaling problems which the Bitcoin developers say they don’t know how to solve? This non-technical CEO knows better.

So, don’t send anyone to an exchange, especially not a “market leading” one. Find some service that actually wants to sell them bitcoin, like CashApp or Swan Bitcoin.

Broadband Speeds, 2 Years Later

Two years ago, considering the blocksize debate, I made two attempts to measure average bandwidth growth, first using Akamai serving numbers (which gave an answer of 17% per year), and then using fixed-line broadband data from OFCOM UK, which gave an answer of 30% per annum.

We have two years more of data since then, so let’s take another look.

OFCOM (UK) Fixed Broadband Data

First, the OFCOM data:

  • Average download speed in November 2008 was 3.6Mbit
  • Average download speed in November 2014 was 22.8Mbit
  • Average download speed in November 2016 was 36.2Mbit
  • Average upload speed in November 2008 to April 2009 was 0.43Mbit/s
  • Average upload speed in November 2014 was 2.9Mbit
  • Average upload speed in November 2016 was 4.3Mbit

So in the last two years, we’ve seen 26% increase in download speed, and 22% increase in upload, bringing us down from 36/37% to 33% over the 8 years. The divergence of download and upload improvements is concerning (I previously assumed they were the same, but we have to design for the lesser of the two for a peer-to-peer system).

The idea that upload speed may be topping out is reflected in the Nov-2016 report, which notes only an 8% upload increase in services advertised as “30Mbit” or above.

Akamai’s State Of The Internet Reports

Now let’s look at Akamai’s Q1 2016 report and Q1-2017 report.

  • Annual global average speed in Q1 2015 – Q1 2016: 23%
  • Annual global average speed in Q1 2016 – Q1 2017: 15%

This gives an estimate of 19% per annum in the last two years. Reassuringly, the US and UK (both fairly high-bandwidth countries, considered in my previous post to be a good estimate for the future of other countries) have increased by 26% and 19% in the last two years, indicating there’s no immediate ceiling to bandwidth.

You can play with the numbers for different geographies on the Akamai site.

Conclusion: 19% Is A Conservative Estimate

17% growth now seems a little pessimistic: in the last 9 years the US Akamai numbers suggest the US has increased by 19% per annum, the UK by almost 21%.  The gloss seems to be coming off the UK fixed-broadband numbers, but they’re still 22% upload increase for the last two years.  Even Australia and the Philippines have managed almost 21%.

Quick Stats on zstandard (zstd) Performance

Was looking at using zstd for backup, and wanted to see the effect of different compression levels. I backed up my (built) bitcoin source, which is a decent representation of my home directory, but only weighs in 2.3GB. zstd -1 compressed it 71.3%, zstd -22 compressed it 78.6%, and here’s a graph showing runtime (on my laptop) and the resulting size:

zstandard compression (bitcoin source code, object files and binaries) times and sizes

For this corpus, sweet spots are 3 (the default), 6 (2.5x slower, 7% smaller), 14 (10x slower, 13% smaller) and 20 (46x slower, 22% smaller). Spreadsheet with results here.

Minor update on transaction fees: users still don’t care.

I ran some quick numbers on the last retargeting period (blocks 415296 through 416346 inclusive) which is roughly a week’s worth.

Blocks were full: median 998k mean 818k (some miners blind mining on top of unknown blocks). Yet of the 1,618,170 non-coinbase transactions, 48% were still paying dumb, round fees (like 5000 satoshis). Another 5% were paying dumbround-numbered per-byte fees (like 80 satoshi per byte).

The mean fee was 24051 satoshi (~16c), the mean fee rate 60 satoshi per byte. But if we look at the amount you needed to pay to get into a block (using the second cheapest tx which got in), the mean was 16.81 satoshis per byte, or about 5c.

tl;dr: It’s like a tollbridge charging vehicles 7c per ton, but half the drivers are just throwing a quarter as they drive past and hoping it’s enough. It really shows fees aren’t high enough to notice, and transactions don’t get stuck often enough to notice. That’s surprising; at what level will they notice? What wallets or services are they using?

Bitcoin Generic Address Format Proposal

I’ve been implementing segregated witness support for c-lightning; it’s interesting that there’s no address format for the new form of addresses.  There’s a segregated-witness-inside-p2sh which uses the existing p2sh format, but if you want raw segregated witness (which is simply a “0” followed by a 20-byte or 32-byte hash), the only proposal is BIP142 which has been deferred.

If we’re going to have a new address format, I’d like to make the case for shifting away from bitcoin’s base58 (eg. 1At1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2):

  1. base58 is not trivial to parse.  I used the bignum library to do it, though you can open-code it as bitcoin-core does.
  2. base58 addresses are variable-length.  That makes webforms and software mildly harder, but also eliminates a simple sanity check.
  3. base58 addresses are hard to read over the phone.  Greg Maxwell points out that the upper and lower case mix is particularly annoying.
  4. The 4-byte SHA check does not guarantee to catch the most common form of errors; transposed or single incorrect letters, though it’s pretty good (1 in 4 billion chance of random errors passing).
  5. At around 34 letters, it’s fairly compact (36 for the BIP141 P2WPKH).

This is my proposal for a generic replacement (thanks to CodeShark for generalizing my previous proposal) which covers all possible future address types (as well as being usable for current ones):

  1. Prefix for type, followed by colon.  Currently “btc:” or “testnet:“.
  2. The full scriptPubkey using base 32 encoding as per http://philzimmermann.com/docs/human-oriented-base-32-encoding.txt.
  3. At least 30 bits for crc64-ecma, up to a multiple of 5 to reach a letter boundary.  This covers the prefix (as ascii), plus the scriptPubKey.
  4. The final letter is the Damm algorithm check digit of the entire previous string, using this 32-way quasigroup. This protects against single-letter errors as well as single transpositions.

These addresses look like btc:ybndrfg8ejkmcpqxot1uwisza345h769ybndrrfg (41 digits for a P2WPKH) or btc:yybndrfg8ejkmcpqxot1uwisza345h769ybndrfg8ejkmcpqxot1uwisza34 (60 digits for a P2WSH) (note: neither of these has the correct CRC or check letter, I just made them up).  A classic P2PKH would be 45 digits, like btc:ybndrfg8ejkmcpqxot1uwisza345h769wiszybndrrfg, and a P2SH would be 42 digits.

While manually copying addresses is something which should be avoided, it does happen, and the cost of making them robust against common typographic errors is small.  The CRC is a good idea even for machine-based systems: it will let through less than 1 in a billion mistakes.  Distinguishing which blockchain is a nice catchall for mistakes, too.

We can, of course, bikeshed this forever, but I wanted to anchor the discussion with something I consider fairly sane.

BIP9: versionbits In a Nutshell

Hi, I was one of the authors/bikeshedders of BIP9, which Pieter Wuille recently refined (and implemented) into its final form.  The bitcoin core plan is to use BIP9 for activations from now on, so let’s look at how it works!

Some background:

  • Blocks have a 32-bit “version” field.  If the top three bits are “001”, the other 29 bits represent possible soft forks.
  • BIP9 uses the same 2016-block periods (roughly 2 weeks) as the difficulty adjustment does.

So, let’s look at BIP68 & 112 (Sequence locks and OP_CHECKSEQUENCEVERIFY) which are being activated together:

  • Every soft fork chooses an unused bit: these are using bit 1 (not bit 0), so expect to see blocks with version 536870914.
  • Every soft fork chooses an start date: these use May 1st, 2016, and time out a year later if it fails.
  • Every period, we look back to see if 95% have a bit set (75% for testnet).
    • If so, and that bit is for a known soft fork, and we’re within its start time that soft fork is locked-in: it will activate after another 2016 blocks, giving the stragglers time to upgrade.

There are also two alerts in the bitcoin core implementation:

  • If at any stage 50 of the last 100 blocks have unexpected bits set, you get Warning: Unknown block versions being mined! It’s possible unknown rules are in effect.
  • If we see an unknown softfork bit activate: you get Warning: unknown new rules activated (versionbit X).

Now, when could the OP_CSV soft forks activate? bitcoin-core will only start setting the bit in the first period after the start date, so somewhere between 1st and 15th of May[1], then will take another period to lock-in (even if 95% of miners are already upgraded), then another period to activate.  So early June would be the earliest possible date, but we’ll get two weeks notice for sure.

The Old Algorithm

For historical purposes, I’ll describe how the old soft-fork code worked.  It used version as a simple counter, eg. 3 or above meant BIP66, 4 or above meant BIP65 support.  Every block, it examined the last 1000 blocks to see if more than 75% had the new version.  If so, then the new softfork rules were enforced on new version blocks: old version blocks would still be accepted, and use the old rules.  If more than 95% had the new version, old version blocks would be rejected outright.

I remember Gregory Maxwell and other core devs stayed up late several nights because BIP66 was almost activated, but not quite.  And as a miner there was no guarantee on how long before you had to upgrade: one smaller miner kept producing invalid blocks for weeks after the BIP66 soft fork.  Now you get two weeks’ notice (probably more if you’re watching the network).

Finally, this change allows for miners to reject a particular soft fork without rejecting them all.  If we’re going to see more contentious or competing proposals in the future, this kind of plumbing allows it.

Hope that answers all your questions!


 

[1] It would be legal for an implementation to start setting it on the very first block past the start date, though it’s easier to only think about version bits once every two weeks as bitcoin-core does.

Bitcoin And Stuck Transactions?

One problem of filling blocks is that transactions with too-low fees will get “stuck”; I’ve read about such things happening on Reddit.  Then one of my coworkers told me that those he looked at were simply never broadcast properly, and broadcasting them manually fixed it.  Which lead both of us to wonder how often it’s really happening…

My approach is to look at the last 2 years of block data, and make a simple model:

  1. I assume the tx is not a priority tx (some miners reserve space for these; default 50k).
  2. I judge the “minimum feerate to get into a block” as the smallest feerate for any transaction after the first 50k beyond the coinbase (this is an artifact of how bitcoin core builds transactions; priority area first).
  3. I assume the tx won’t be included in “empty” blocks with only a coinbase or a single non-coinbase tx (SPV mining); their feerate is “infinite”.

Now, what feerate do we assume?  The default “dumb wallet” fee is 10000 satoshi per kilobyte: bitcoin-core doesn’t do this pro-rata, so a median 300-byte transaction still pays 10000 satoshi by default (fee-per-byte 33.33).  The worse case is a transaction of exactly 1000 bytes (or, a wallet which does pro-rata fees), which would have a fee-per-byte of 10.

So let’s consider the last two years (since block 277918).  How many blocks in a row we see with a fee-per-byte > 33.33, and how many we see with a feerate of > 10:

Conclusion

In the last two years you would never have experienced a delay of more than 10 blocks for a median-size transaction with a 10,000 satoshi fee.

For a 1000-byte transaction paying the same fee, you would have experienced a 10 block delay 0.7% of the time, with a 20+ block delay on eight occasions: the worse being a 26 block delay at block 382918 (just under 5 hours).  But note that this fee is insufficient to be included in 40% of blocks during the last two years, too; if your wallet is generating such things without warning you, it’s time to switch wallets!

Stuck low-fee transactions are not a real user problem yet.  It’s good to see adoption of smarter wallets, though, because it’s expected that they will be in the near future…

Bitcoin: Mixed Signs of A Fee Market

Six months ago in a previous post I showed that 45% of transactions have an output of less that $1, and estimated that they would get squeezed out first as blocks filled.  It’s time to review that prediction, and also to see several things:

  1. Are fees rising?
  2. Are fees detached from magic (default) numbers of satoshi?
  3. Are low value transactions getting squeezed out?
  4. Are transactions starting to shrink in response to fee pressure?

Here are some scenarios: low-value transactions might be vanishing even if nothing else changes, because people’s expectations (“free global microtransactions!” are changing).  Fees might be rising but still on magic numbers, because miners and nodes increased their relayfee due to spam attacks (most commonly, the rate was increased from 1000 satoshi per kb to 5000 satoshi per kb).  Finally, we’d eventually expect wallets which produce large transactions (eg. using uncompressed signatures) to lose popularity, and wallets to get smarter about transaction generation (particularly once Segregated Witness makes it fairly easy).

Fees For The Last 2 Years

The full 4 year graph is very noisy, so I only plotted the mean txfee/kb for each day for the last two years, in Satoshi and USD (thanks to the Coindesk BPI data for the conversion):

 

Conclusion: Too noisy to be conclusive: they seem to be rising recently, but some of that reflects the exchange rate changes.

Are Fees on Magic Boundaries?

Wallets should be estimating fees: in a real fee market they’d need to.

Dumb wallets pay a fixed fee per kb: eg. the bitcoin-core wallet pays 1,000 (now 5,000) satoshi per kb by default; even if the transaction is 300 bytes, it will pay 5,000 satoshi.  Some wallets use (slightly more sensible) scaling-by-size, so they’d pay 1,500 satoshi.  So if a transaction fee ends in “000”, or the scaled transaction fee does (+/- 2) we can categorize them as “fixed fee”.  We assume others are using a variable fee (about 0.6% will be erroneously marked as fixed):

This graph is a bit dense, so we thin it by grouping into weeks:

 

Conclusion: Wallets are starting to adapt to fee pressure, though the majority are still using a fixed fee.

Low Value Transactions For Last 4 Years

We categorize 4 distinct types of transactions: ones which have an output below 25c, ones which have an output between 25c and $1, ones which have an output between $1 and $5, and ones which have no output below $5, and graph the trends for each for the last four years:

Conclusion: 25c transactions are flat (ignoring those spam attack spikes).  < $1 and <$5 are growing, but most growth is coming from transactions >= $5.

Transaction Size For Last 4 Years

Here are the transaction sizes for the last 4 years:

Conclusion: There seems to be a slight decline in transaction sizes, but it’s not clear the cause, and it might be just noise.

Conclusion

There are signs of a nascent fee market, but it’s still very early. I’d expect something conclusive in the next 6 months.

The majority of fees should be variable, and they’re not: wallets remain poor, but users will migrate as blocks fill and more transactions get stuck.

A fee rate of over 10c per kb (2.5c per median transaction) hasn’t suppressed 25c transactions: perhaps it’s not high enough yet, or perhaps wallets aren’t making the relative fees clear enough (eg. my Trezor gives fees in BTC, as well as  only offering fixed fee rates).

The slight dip in mean transaction sizes and lack of growth in 25c transactions to may point to early market pressure, however.

Six months ago I showed that 45% of transactions were less than a dollar.  In the last six months that has declined to 38%.  I previously estimated that we would want larger blocks within two years, and need them within three.  That still seems a reasonable estimate.

Data

I used bitcoin-iterate and a really crappy Makefile to generate CSVs with the data.  You can see the result on github or go straight to downloading the Gnumeric spreadsheet with the graphs.

Disclaimer: I Work For Blockstream

On lightning.  Not on drawing pretty graphs.  But I wanted to see the data…